The Microbiota-Gut-Brain Axis and Alzheimer's disease: A Bibliometric Analysis based on Web of Science Database from 2014 to 2023

Chen-Wei Chang, RN1; Yue Yang2; Malcolm Koo, PhD3

¹General Care Nursing Home, Hualien Armed Forces General Hospital, Hualien City, Taiwan ²Yuesheng Home Long-term Care Institution, Hualien City, Taiwan ³Department of Nursing, Tzu Chi University, Hualien City, Taiwan

** Background **

- The microbiota-gut-brain axis is a bidirectional communication system between the gut microbiome and the central nervous system
- Clinical and epidemiological evidence suggests that gut microbiota can influence this relationship, affecting emotional and cognitive functions and contributing to the development and progression of neurodegenerative diseases, including Alzheimer's disease
- This bibliometric study investigated the relationship between the microbiota-gut-brain axis and Alzheimer's disease using the Web of Science database from 2014 to 2023

* Methods *

Science Citation Index Expanded (SCI-E)
Web of Science Core Collection

TIPE MENTALLINE

Search topic: "gut-brain" and "Alzheimer*"

Inclusion criteria: Jan 1, 2014 to Dec 31, 2023 Original articles in English

Analyzed using Bibliometrix & VOSviewer

** Results **

- A total of 2,759 original articles were analyzed in this study
- The number of published papers on microbiota-gut-brain axis and Alzheimer's disease is increasing each year, with an annual growth rate of 35% from 2014 to 2023
- The articles were published in 64 countries/regions and 850 academic journals by 17,387 authors
- The journal Nutrients published the most papers (102 articles), followed by Brain Behavior and Immunity (73 articles)
- The most prominent author was Cryan, John F., who had published 77 original articles
- The University College Cork (314 articles) and China (837 articles) were the major institution and country, respectively
- « Keywords co-occurrence network analysis revealed three main clusters: depression, inflammation, and gene expression

* Conclusion *

- Interest in the microbiota-gut-brain axis and its connection to Alzheimer's disease has significantly increased over the past decade
- Our findings showed the multidisciplinary nature of this research field. Network analysis of keywords demonstrated that gut health impacts psychological and behavioral aspects, plays a critical role in regulating systemic and neuroinflammation, and influences molecular and metabolic pathways involved in the pathogenesis of Alzheimer's disease
- These results suggested that gut microbiota could be a potential therapeutic approach to address Alzheimer's disease

↑ Top 10 countries contributing articles on microbiota-gut-brain axis & Alzheimer's disease

O Top	IU journals publishing articles on microbiota-gut-brain a	axis & Alzneimers disease
Rank	Journal [publisher]	Articles, n (%)
1	Nutrients (MDPI)	102 (3.7)
2	Brain Behavior and Immunity (Elsevier)	73 (2.6)
3	Scientific Reports (Springer Nature)	65 (2.4)
4	Frontiers in Microbiology (Frontiers Media)	49 (1.8)
5	International Journal of Molecular Sciences (MDPI)	47 (1.7)
6	Frontiers in Neuroscience (Frontiers Media)	38 (1.4)
7	Frontiers in Cellular and Infection Microbiology (Frontiers Media)	33 (1.2)
8	Gut Microbes (Taylor & Francis)	33 (1.2)
9	Frontiers in Psychiatry (Frontiers Media)	31 (1.1)
10	Frontiers in Nutrition (Frontiers Media)	28 (1.0)

